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1. Introduction.
t . Let {xi,izl} be a random sequence with identical marginal distribution F(x) =
- P{Xi < x} for all i, We deal with the approximation of probabilities of the type:
% Pn = P{Xi Su.s i<n}
! as n -+ <, where {uni , i<n,n21} is considered as the real-valued boundary.

In the case u. = u for all i < n, this probability gives the distribution of
the partial maxima Mn = max{Xl,. ces Xn}. The classical extreme value theory dis-
cusses the possible asymptotic distribution of Mn as n + », where Xi are i.i.d.

T.v., i.e.,
Pla M -b) < x} = [F(u (x))]" > G(x)
where G(x) is one of the three known extreme value type distributions and an,bn
norming values, un(x) = x/an + bn'
It was shown that the same result remains true even if X.1 is a stationary se-

quence satisfying weak dependence restrictions (see e.g. Leadbetter [3] or Lead-

better, Lindgren and Rootzén [5]). To prove this result it was shown that
' n
P{M <x/a +b_} = [F(u (x))]" + o(1)
The same argument was used for the general case of a non-stationary random sequence,

i.e. it was shown in {2] that

(1.1) P{Xisuni,lsn} = F(uni) +0(1) asn->w

1

n =3

i

under suitable conditions.

We remark that the studied probabilities covers also the extreme value case for
non-stationary sequences, by transforming P{Mn < un} into P{Xi < uni}' More

detailed, e.g. if }i is any normal non-stationary sequence, with “i = F,Xi ,

O? = Var X,, M = max{X X

i i? n 1°°° n}’ then
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2
P{MnSun} = P{XiSun,lsn} = P{(xi'ui)/oi S (un-ui)/ci,lsn}
= P{X, s u ,,isn}
i ni
where Ui = (un - ui)/oi, F(x) = &(x) the standard normal law and Xi a standardized

normal non-stationary sequence.
Define Xg = sup{x: F(x)<1} < « and let F(xo—) = 1. We suppose throughout the

aper tha .= u.. = min{u .,i<n} > x, as n > ©», Furthermore we restrict
pap t um1n mln(n) min{ ni’ } 0

our attention to the interesting case where HF(uni) tends to a value different from

OCorl.

The sufficient conditions used in proving (1.1) are as follows:

Condition A: Let Fn = Fn(uni) = F(uni) with F(x) =1 - F(x). Then assume

1

"33

i

(1.2) limsup F_ < » and 1liminf F_ > 0
n-o n N n

The dependence restrictions are

172
i - ip 2m, let I = {i,,L=1,..., p}, J = {j£,£=1,...,q}, B(I) = {XiSuni,ieI} and

Condition D (=D(uni)): For any integers 1<i_<i <...<ip<j1<j2<...<jq3n for which

similar B(J). Then we assume sup| P(B(InJ)) - P(B(I)) - P(B(J))I < o m where

I,J ’
o + 0 as n » » for some sequence m; such that
n,m*
n
1.3 *F(u.,)>0 as n->o,
(1.3) Mn (um1n) a

Condition D' (=D'(uni)): Let n,r be integers and 1 a subset of {1,..., n} of the

form {iISisiz} such that } ?{uni) < Fn/r. Then assume that

iel
(1.4) max min ) P{X.>u_.,X.>u_.} < a*
I I*el iﬁjZI* i"ni’"j Tnj n,r
such that
(1.5) lim limsup r a* =0

T o n,r
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where the min in (1.4) is considered on subsets I* of I with

(1.6) Y F(u.) s g(r)/r for all n 2 ny (1)
jel-1+ ™

and g(r) 0 as r -+,
These conditions are sufficient for (1.1) (see Theorem 2.2 of [2]) and in addition
we got that if

(1.7) Fn > T 85 N> ®
then

(1.8) P - el asn->o, forT >0 .

The purpose of this paper is todiscuss the necessity of the three conditions. In
Section 2 we show mainly that the conditions D and D' with (1.8) imply (1.7). 1In
Section 3 we assume only the Condition D and (1.7) and find that the possible limits
of Pn may still be described. This gives us the relation to the stationary case of

the extreme value theory and to the extremal index, defined in this context by Lead-

better [4].

2. Necessity of Condition A.

We consider in this section the equivalence of (1.7) and (1.8) if the conditions
D and D' hold for a given randem sequence {Xi} and a boundary {uni}. Since we have
shown in [2] that (1.7) implies (1.8), it remains to prove the converse. It suf-
fices to prove only that liminf Fn > 0 and limsup Fn < o since by the first part
of Theorem 2.2 [2]: Pn - e-Fn = 0(1), which implies (1.7) by (1.8). This proof

uses the same technique as in [2]. Since the same technique is used also in Sec-

tion 3, we mention some of the results of [2] in detail.

Lemma 2.1. Let n,r be fixed integers and Loeees 1 intervals of {1,..., n} such

that Ii and Ij are separated by at least m for i # j. Suppose Condition D holds

for a given boundary {uni}. Then

IP(

1 B(I,)) - .ﬁ PBI )| <ra .

1 i=1 n,m

n or
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We use the following construction. Split the set {1,..., n} into intervals Ip,

£=1,..., r, such that I = {,..., il} with

{ i

1
Fn,l = izl F(“ni) = Fn/r

and Fn,l + p(un,ifl) > Fn/r
(i.e. i, is chosen as large as possible). Let I, = {il+1,..., iz} such that
i,
Fn,2 . Z F(uni) s Pn/r
1=11+1

with iz maximally chosen. By repeating this procedure r times, we find intervals

IZ with 1r £n,

(2.1) 1=n’£ = 'ZI Flu ,) < Fn/r i
and B £
i o}
’ T T _
(2.2) zzlp"’f = iz'l» Flu ) <F_ .

Furthermore let 0 < €< 1. Split each interval IE into two subintervals IZ 1 and

I£’2 where

I‘e,z = {iz‘m£+1,.-o, iz}

contains the last mepoints of IL’IZ 1 the remaining points such that

#. iZI F(un.l) <F €/t
2,2

and m, is maximally chosen.

We proved in [2] that since ?Iumin) +0as n->ow

[ (2.3) _ m£ +1 2 Fn e/r .f(umin)
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Lemma 2.2. If € = €(n) with

(2.4) e(n) - Fn +0 as n-o»>o

then for any integer r

.
Pn - P{XiSuni,1e£:112 1} +0 asn-+>o,

Proof: We have
n
0 < P{X;<u . slevl, e { T R+ 1 Fu)
£=1 1eIz 1=1r+1

The first term is bounded by r - e(n)Fn/r = g(n) ° Fn + 0, using the construction
of IZ 2 and (2.4). A simple argument showed in [2] that the second term is bounded

b

by r - ?Iumin) + 0 as n » «» for all r. g
Lemma 2.3. i) (1.8) implies liminf F_ > 0

. . — — 3 - * .

ii) e(n) -(m;'j‘+1)F(umin)r/f-‘n-> 0 and satisfies (2.4), where me is
given by Condition D.

Proof: i) Since P o=1- P{3i: xi>uni} 21 - F we have F,o>1- P but
-T

P +e < 1. Thus liminf F_ > 0.
n n
ii) The given e(n) satisfies
e(n) - F o= (m;+1)?tumin) er >0 for any r by Condition D.
By i) we have ¢e(n) < K - (m;+1)§tumin) *« v » 0 for a suitable constant K. O

Lemma 2.4. 1If (1.8) , Condition D and D' hold, then 1limsup Fn < o

n-0

Proof: Lemma 2.1 and 2.2 with the chosen €(n) imply that

»

limsup IPn - HP(BZ,I)‘ +0 asr -+

1 5atd

with B£ 1= B(Il 1). Thus by using (1.8) and log(l-x) < -x, it implies
T
(2.4) limsup ) (l-P(Bz 1)) < K for any r.
n>e  f=] !
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We proved in [2] the inequality
T T
(2.5) s .:=J) Y Fu.,=2 ] @Q-PB,,)=z5__ -gr) -ro*
n,r 251 lelz ni 2=1 Z,1 n,r n,r
s1
by using Condition D'.
As in Lemma 2.2 we find
(2.6) Fn < Sn,r + g(n) - F(umin) + rF(umin)
Finally, combining (2.5) and (2.6) and using (2.4) gives the desired result. 0

Thus we proved
Theorem 2.5. Let {xi,izl} be a random sequence with identical marginal distribution
F(x) and {uni’ is<n,n21} a real-valued boundary. Assume that the conditions D and D'

hold together with u . -+ x,  as n + «, Then for T > 0
min 0

Fn > T asn—+®
is equivalent to

. -T
P = X.<u .,i<n} > e > o
N P{ $5U } as n

Next we state an easy consequence of Theorem 2.5 for the case where we consider

only a subset of {1,..., n} in the probability P -

Corollary 2.6. If in addition to Theorem 2.5, I_ < {1,..., n} such that

(2.7 Fallp: =1 Flug) > 1 asnse, vcr,
iel
n
_T
then Pn(In): = P{XiSuni,ieIn}-*e T as n + o,

Proof: It remains to prove that the Condition D and D' hold with respect to the

"new'" boundary

u_. iel
ni n
ni .
i I
x0 ¢ n

Condition D holds for ani since B(I) = {Xisﬂni,iel} = B(InIn) for any I < {1,..., n}

and ?t;min) < it“min)' Condition D' holds in an analogous way: Let I be a subin-

terval of {1,..., n} with E F(uni) < Fn(In)/r. Then also 2 F(uni) =

iel ieT
Y ?Iun.) < Fn/r. Thus there exists a subset I* satisfying
ieInl 1
n
(2.2) Y)Y P{X;>u .,X.>u .} < a*
i<jer* i ni’"j "nj n,r




by U(uni). But the 1.h.s. of (2.8) is larger than

D) P{X.>u .,X.>u .} = JJ P{X,>u . ,X.,>u .}
i<jel*nl 157 M e 1 MI M

..
r .
»
"
[ 4
K-

Since also )} F(u.) < )} F(u.), the condition D'(u_.) holds with the same
. ni . ni ni
iel-I* ieI-I*

values a; r and g(r). a

From this it is obvious that the Poisson limit result in [2] for the number of ex-
ceedances Nn(I) = #{jel: xi>uni}’ with I = {1,..., n}, generalizes for any se-

;‘ quence of subsets In’ i.e.

Nn(In) has an asymptotic Poisson distribution
with parameter t', if (2.7) holds in addition
¥‘ to the Condition D, D' and (1.7).

3. Results under Condition D.

With the construction and results of Section 2 we discuss now the asymptotic
behavior of Pn without assuming Condition D'. In the stationary extreme value case
it was shown by Leadbetter [4] that if un(T) is such that (1.7) holds and the Con-
dition D is satisfied for a particular un(To), To > 0, then there exist constants

9,6", 0 £ 0 < 8'< 1 such that

limsup P{X.Sun(T),isn} = 0T
N> 1
(3.1)
.. . -6'1
liminf P{Xisun(r),lsn} = e

n->o

for all 0 < 1 < To- The notation un(T) =u indicates the value T used in (1.7).

- We remark that in the constant boundary case un(T) in (3.1) is defined by e.g.

un(T) = u[nTO/T](TO); then un(T) satisfies (1.7) for any T>0. Analogously we de-
fine now uni(T) for any 0<TST0, if uni(To) satisfies (1.7) for a TO>0 as follows:
u_.(1.) i<s
N ni- 0
(3.2) uni(T) =
b4 s<ign
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where s is maximally chosen such that 2 F(u .(To])SFnT/TO. Naturally,
i<s
ignF(uni(T))4T , as n >, since u_, -x,.

(3.1) is called the extremal index, thus denoted generally

If P converges, then the value 8 in

6 = -log ;i: P{XiSUni(To),lsu}/To .

In the stationary case with a constant boundary (3.1) shows that © does not de-
pend on Ty Since we do assume neither the stationarity of the random sequence
nor the constancy of the boundary, we expect a greater variety of properties of
6 as a simple example indicates.

Let YI’YZ"" be an i.i.d. sequence with continuous marginal distribution F

and normalization un(T) = F 1(T/n),T>0. Let

Xi = Y[(i+1)/2],izl .

T/2

Then it is easily checked that P{XiSun(T),iSn} + e as n >, T >0, Thus
® = 1/2 for the fixed level boundary. Take now e.g.
un(ZT) for i odd

uni(T) =

XO for i even

where X5 is again the endpoint of F. Naturally 2 ?Iuni(T)) + T and
i<n

n+l
]

-T
> .

P{Xisuni(T),isn} = P{Yisun(2t),is[ } > e

Thus 6=1 for this particular boundary. By defining other boundaries u;i in a
similar way, fixed for some i's and equal to X, for the remaining i's, we find
other values 6<1. The same fact holds even if we define Xi to be stationary by
P{Xi=Y[(i+1)/2],1zl} = P{xi=Y[i/2]+1’121} = 1/2. For the same random sequence we
show that 6 may even depend on the given value T for a non-smooth boundary.
Let un(ZTO) i odd,isn/2

uni(TO) = Xo i even,isn/2

un(TO) n/2<is<n
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Then the obvious calculations show that (1.7) holds with T1,>0 and 6 = e(uni(TO))=3/4-
But for TSTO/Z we have s<n/2 in the definition (3.2) and thus 6 = e(uni(r)) =1,

This shows that for particular stationary and non-stationary sequences the pos-
sible parameter 0 depends strongly on the given boundary; i.e. 9 = e(uni)' This
dependency is not restricted to a particular extremal index 6 = e(un(T)) =1/2 as
in our example, for we may replace in the above example the i.i.d. sequence Yi by
sequences Yi given in Chesnick [1], Rootzén [7] or de Haan in Leadbetter [4], where
B = G(un(T)) may be any value < 1.

On the other hand it is obvious that for i.i.d. sequences, we find the same
parameter O = 1 for any boundary values satisfying (1.7), for any value T > 0. The
following result shows that this is not only true for i.i.d. sequences.

Theorem 3.1. Let {Xi,izl} be a Gaussian sequence with identical marginal distribu-

tion ®(x), the unit normal law. Assume that the correlation function r(i,j) satis-

fies

(3.3) max |r(i,j)|logn >0 asn > ®
i3]

then P{XiSuni(T),iSn} >e ' asnow®, T>0

where {uni(T)} is any boundary satisfying (1.7) for any value T > 0. Thus 0 =1
for any boundary.

The proof of this result is mainly given in Husler [2]. This is a particular
case of the more general statement in Corollary 2.6, since (3.3: implies D and D'
for any boundary. From this one might argue that if 0 = 1 for a certain boundary,
then © = 1 for any boundary as long as D holds. But the above example indicates
that this is notrtrue in general, and also that the stronger condition D'(uni\ does
not imply D'(u;i) to hold for any other boundary u;i.

In the following we discuss some properties of the extremal index for genceral

cases. The first result shows that € cannot be larger than 1.
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Lemma 3.2: Let {Xi,izl} be a random sequence with identical marginal distribution.

If (uni) satisfies (1.7) for some value 7>0 and D, then

.. . -1
2
liminf P{XiSuni,lsn} 2 e

n->e
Proof: We use the technique of Section 2 to define intervals Tps £=1,..., r for

r,n fixed. Then we know that

T
P{xiSuni,1sn} - lglp(B(Iz)) + 0 as noo

But P(B(It)) 21 - z ?Iuni) +1 - 1/r as n > « by the construction of the Iz's.
iel
L

Thus liminf P{XiSuni,iSn} 2 (1-1/0)F » el asr oo, n-
n-<

Now we prove that the extremal index, if existing, is equal for boundaries, which
differ only slightly from each other.
Lemma 3.3: Let {Xi,izl} and (uni) be as in Lemma 3.2 with T > 0. Let {u;i} be

another boundary satisfying (1.7) with the same value t1. If for each n either

u . € *, Vi<n
ni ni

(3.4) or
u . z u*, Vign
ni ni

then 1) Condition D holds also with respect to u;i ,

. s - . * =

ii) If 8 = e(uni) exists, then G(uni) 6
Proof: i)} Similar to the proof of Corollary 2.6 it is sufficient to show that
P(B(1)) - P(B*(I)) » 0 as n »~ «, for any Tc{l,..., n} where B*(I) = {Xisu;i,iel}.

But using (3.4) we have

0 PB*(TN-P(B(T) s § (Flu .)-F(u*)) <
iel i

Hr~13
—

(Flu ;) -Flu*.))

which tends to 0 by (1.7}, if ug < u;i. The converse case holds in the same way.
ii) This follows as in i) by setting I = {1,..., n}, without use of Condi-

tion D. {1
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This indicates that there are classes of boundaries having the same extremal in-

dex, in case of existence, We give a description of such a class, more general
than (3.4).

Let {uni} be a given boundary. Then for another boundary {u;i} define

I = {isn: u_.<u*.} and assume that either

n ni ni

(3.5) ) F(u ;) = o) or Y ?ru;i) = o(1)
1eIn iéIn

Theorem 3.4. Let {Xi,iZI} be a random sequence and {uni(T)} a boundary satisfying
(1.7) and 1>0. Let {u;i(T)} be another boundary satisfying (3.5) and (1.7) for
the same value T. Then
3 *
i) If D(uni) holds, then also D(uni)
.. - . * -
ii) If © e(uni) exists, then 9(uni)

Proof: Define in the case | ?Iuni) = o(1)

1£In
ﬁni ) u;i 1eIn
X 1;!1n
By the assumption (3.5)
0< ) Fluxp - ) F@ = )} Fur) = o)
i<n i<n 1¢In

Thus (ﬁni) satisfies (1.7) with 1. By Lemma 3.3, Condition D(Gni) holds and

OCu_.) = 0, since u_.2u ., for all is<n. But also u_.2u*. for all i<n, thus the
ni ni ni ni ni

two statements of the lemma follow by using Lemma 3.3 again with Gni in place of

u - The proof for the case X F(u i) < o(1) is similar, by defining
161
~ Yni l“n
Yni T
Xg icIn . O

We now give a sufficient condition for the existence of the extremal index

with respect to a smooth boundary. This generalizes the condition D',
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(k) - S
Let SO = ) ... T Pix ou . X o>u o, X ou L b k2l

11<12<...<1keI 1 1

Then assume that for a value 6, 0s6<1 ,

(3.6) linsup max min |rs{?) (1%)-1,(1-6)| + 0 as r + =
meo I Tkl O

and

limsup max min rs(s)(l*) +0asr+o
R G O

where the max on I is taken over intervals I = {ilsisiz} c {1,..., n} with

F /r-F(u_. ) < 5 F(u_.) € F_/r and where the min on I* is taken over subset
n min jer 0 n
I*cI such that S {1 (I-1%) = §

F(u_.) < g(r)/r for all n 2 n_(r),g(r)+0 as r =,
iel-1+ ™ 0

Theorem 3.5. Let {Xi,izl} be a random sequence with identical marginal distribu-
tion and {uni} a boundary satisfying condition D, (1.7) and (3.6) for a 6 and a

7,>0. Then 6(uni(T)) = § for all O<1st

0 where uni(T) is defined in (3.2).

0!

Proof: We prove first 6(uni(T0)) = §. Define as in Section 2 for n,r fixed the

intervals IK’ £=1,..., r. Condition D implies again that

T
P - 1 P(B(I,)) >0 asn~» >,
e £

Now for each £, there exists a Iz such that

0 < P(B(I})) - P(B(I,) < sﬁl)(rz-lz < g(r)/r
for all nzno(r) and by Bonferroni's inequality

P(B(1})) < 1 - sgl)(lz) + sﬁz)(rz)

reB(I§)) > 1 - sﬁl)(lz) + sﬁz)(rz) - sﬁs)(ré)




?

Thus

TA0 T, (1-6)
1 - —g~ ~limsup max minlSéz)(I*)- -9-;7——I-limsup max min 8(3)(1*)- gr)
n» I I* mo 1 [* N T

s liminf P(B(I,)) < limsup P(B(I,))
n>x n

T,.8 (2) To(l-e)
<1 - — + limsup max min|S </ (I*) - ——| + g(r) /T .
T o I ¢ D T

By the assumption (3.6) we have that

910+o(1) r T T
(1- — )" £ liminf 1T P(B(Iz)) < limsup 1T P(B(Iz))
n»o  f=1 ne  f=1
0t +0(1)
0 T
< - ——)
-OTO
where o{1) -~ 0 as r » «, Thus by letting r + © we have 1lim Pn = e .
n-—»>o
ii) Let the sets I£ be as in i) depending on T3 denote by r! = [Tr/TO]. Then by
the definition of s in (3.2)
g I,e{l,..., s} = Jc T+l I,
2=1 £=1
T (1)
But 0<PB(UTI)) - PBWT)) <S (I.,.,) <F/r->0 asr > oo,
£=1 L n r'+l n
The proof in i) shows that
. 6T0+°(1) ' r! r!
(1- ———;———J < liminf P(B( U Iﬂ)) < limsup P(B{ U Iz))
. n->« £=1 n->oo £=1
, Bt _+0(1)
0 r'
. s - S
A Thus for r +~ © we find by combining the above facts that
5 lim P{X,<u .(7),isn} = lim P(B())) = e-eT. M
oo i ni -
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!
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We remark that we might use instead of uni(T) defined in (3.2) any other
boundary u;i(r), which is equal to uni(ro) on a certain interval J' and equal
to X, on the complement of J', where J' such that Sﬁl)(J') ~ FnT/To.

This theorem generalizes the result (3.1) known for stationary random se-
quence with a constant boundary to non-stationary sequences with respect to a
non-constant, but smooth boundary. Together with Theorem 3.4 we know now that
the extremal index 6 = B(un) defined in the case of stgtionarity with a constant
boundary holds to be the same value for a class of non-constant boundaries,
which differ slightly (depending naturally on the finite-dimensional distribu-

tions) from the constant boundary.
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